VANTAGENS E DESVANTAGENS DA PRODUÇÃO DE LEITE EM SISTEMAS PASTORIS

Fatores que determinam o sistema de produção de leite

- Terra área/limitações
- Capital investimento/tecnologia
- Mão de obra capacitação/tecnologia
- Instalações/máquinas/equipamentos
- Animais potencial genético
- Mercado exigências/remuneração/escala
- Clima
- → Sistema à pasto; confinamento

Fatores que determinam a produção leiteira

- Melhoramento genético → Capacidade produtiva.
- Maior metabolismo, maior tamanho, porém capacidade de consumo limitada > qualidade do alimento
- Exigência nutricional x Produção de leite
- →Leite entra pela boca do animal consumo de matéria seca limitado

Importância da qualidade da dieta/pasto

A PROBLEMÁTICA DA PRODUÇÃO DE LEITE

Forragens → base da alimentação de ruminantes

Qualidade da forragem X Exigência Animal

Baixa Produtividade

Produção estacional das forragens

- Qualidade baixa mesmo no período favorável
 - Suplementações e complementações alimentares

> PRODUÇÃO FORRAGEIRA ESTACIONAL

CONSEQUENCIAS DA PRODUÇÃO ESTACIONAL

- Baixa fertilidade
- Elevado intervalo entre partos
- Maior suscetibilidade à doenças e verminoses
- Baixa produção de leite no período crítico (pastagem de verão x inverno)
- Baixa produtividade lotação/ha
- Necessidade de complementação alimentar conforme exigências nutricionais/produção

CRITÉRIOS PARA SUPLEMENTAÇÃO ALIMENTAR

DESEMPENHO ANIMAL À PASTO A produção individual depende:

- Do potencial genético do animal
- Da composição química da pastagem
- Do consumo de MS da pastagem

A produção por unidade de área depende:

- Do número de animais na área lotação
- Do desempenho individual dos animais

O consumo de MS da pastagem depende:

- Da qualidade da pastagem
- Do potencial produtivo do animal (genética)

QUALIDADE - VALOR NUTRITIVO

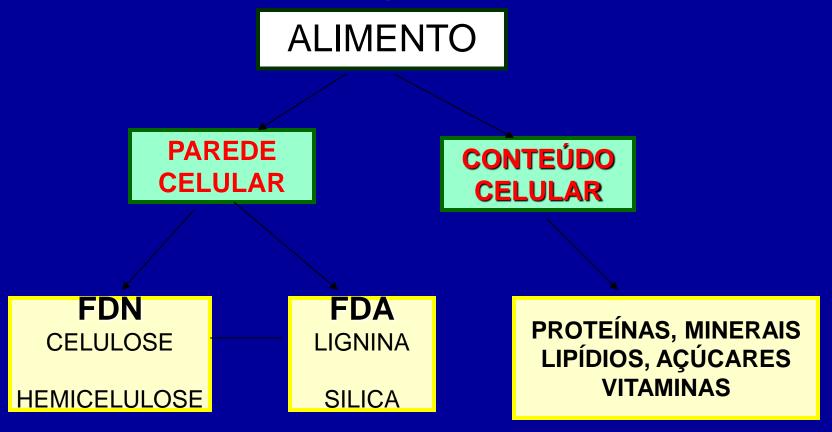
É a quantidade de nutrientes disponível para o animal

Depende:

- Composição química da forragem
- Consumo da matéria seca
- Digestibilidade da matéria seca

Não só a composição química determina o valor nutritivo – consumo e digestibilidade

COMPOSIÇÃO QUÍMICA - PRINCÍPIOS NUTRITIVOS


São os nutrientes necessários para a mantença e produção dos animais.

- Carboidratos
- Lipídios ENERGIA
- Proteínas
- Vitaminas
- Minerais
- Particularidades dos ruminantes Digestão microbiana simbiose

FATORES QUE DETERMINAM A DISPONIBILIDADE DE NUTRIENTES PARA O ANIMAL EM PASTEJO

COMPOSIÇÃO QUÍMICA DAS PLANTAS

- Depende de aspectos genéticos e ambientais
- Varia nos diferentes órgãos e tecidos

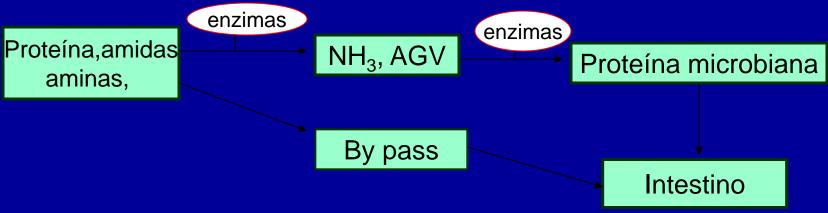
DESCRIÇÃO DOS COMPOSTOS

A) Parede Celular

FDN – fibra detergente neutra

- Expressa a densidade volumosa da planta e determina o consumo de MS.

FDA – fibra detergente ácida


- Define a digestibilidade da MS ingerida e
- Tempo de retenção da digesta

São os principais fatores que limitam o consumo de MS e a utilização dos nutrientes

B) CONTEÚDO CELULAR - Proteína Bruta

Inclui todos os compostos nitrogenados: NP e NNP (aminoácidos, aminas, amidas, nitratos).

- Proteína verdadeira até 70% nas plantas
- NNP 5-10% ligado à lignina na PC indisponível para os microorganismos.
- ▶ Degradação dos compostos nitrogenados:

C) CONTEÚDO CELULAR - Carboidratos

Principal fonte de energia para ruminantes

Parede celular - celulose
 hemicelulose

Estruturais

- Conteúdo celular amido ↓ nas folhas (C₄)
 - sacarose
 - glicose

Solúveis

- fructanas
- Plantas tropicais > PC e < CC (bainha vascular)
- Gramíneas CH₂O estruturais > que leguminosa
 - Menor digestibilidade da MS com a idade
- Lignificação ↑ com a idade da planta

DEGRADAÇÃO DOS CH2O NO RÚMEN

ESTRUTURAIS

HEMICELULOSE CELULOSE

Celulolíticas

ACÉTICO PROPIÔNICO BUTIRICO

pH 6,2 a 6,8

NÃO ESTRUTURAIS

AMIDO, GLICOSE SACAROSE

Amilolíticas

ÁCIDO LÁTICO

Acidose pH < 5,5

Teor mínimo de FB na dieta

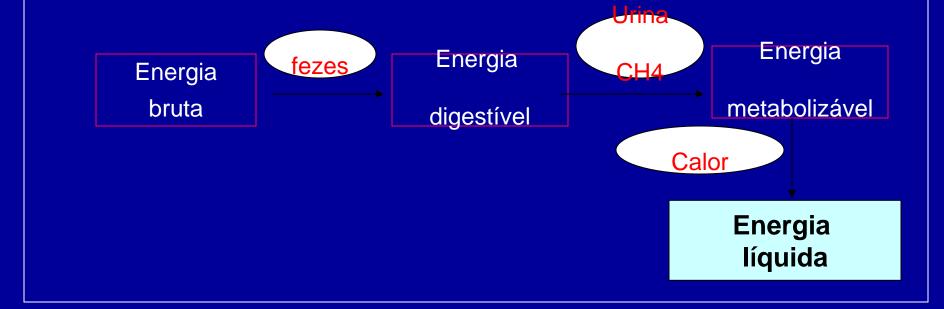
D) CONTEÚDO CELULAR - Lipídios

Importante fonte de energia - com limitações

- Excesso compromete a digestibilidade da MS
- Teor de lipídios nas forragens 4 a 6% (cêras)
- Limite máximo na dieta 6 a 8% cuidado com a utilização de produtos oleosos - soja e algodão integrais, farelo de arroz

E) CONTEÚDO CELULAR - Minerais

Papel essencial no metabolismo animal e vegetal Macroelementos - Cl, Na, Ca, P, S, K, Mg Microelementos - I, Zn, Cu, Co, Se, Mn, Fe, Mo Suplementados no cocho e/ou ração


F) Energia

Resulta do desdobramento dos demais nutrientes

- Expressão da Energia:
 - NDT- nutrientes digestíveis totais (%)

$$NDT = PD + FD + ENND + (EED \times 2,25)$$

- ENERGIA LÍQUIDA - Kcal ou Mcal/kg de MS

O CONSUMO DE MATÉRIA SECA

- Qualidade da Forragem
 - % de FDN e FDA Densidade volumosa
 - Tempo de retenção
 - Consumo de MS em % do peso vivo
 - MS(% PV) = (120 / % FDN) x1,2 a 1,4

Disponibilidade de Forragem
Número de bocados limitado

Para uma maior Disponibilidade/qualidade:

- Maior massa por bocado x Altura
- Menor tempo de Procura
- Menor seleção

Maior Consumo de MS

Estimativa do Desempenho Animal em Pastagem

A exigência nutricional é função do peso vivo e do estágio e capacidade produtiva do animal

▶ Considera-se:

- Exigência nutricional tabelado ou calculado
- Capacidade de consumo de MS estimado pelo teor de FDN da forragem
- Composição química da forragem
 - análise ou tabela
- Disponibilidade de Matéria seca lotação

ALIMENTAÇÃO DE VACAS LEITEIRAS

CÁLCULO DAS EXIGÊNCIAS NUTRICIONAIS PARA VACAS LEITEIRAS

NECESSIDADES DE MANTENÇA

Exigência em NDT = 0,029 x kg¾ (peso metabólico)

Exemplo: vaca de 600 kg

NDT(kg)= $0.029 \times 600\% > 0.029 \times 21.56 = 6.25 \text{ kg}$

Exigência em Proteína Bruta:

40 g de PB por cada 330 g de NDT

PB= $40 \times 6.250 / 330 = 750 g de PB por dia$

Cálcio= 22 g; Fósforo= 17 g

NECESSIDADES DE PRODUÇÃO DE LEITE

Para cada kg de leite corrigido a 4% de gordura são necessários:

PB= 78 g; NDT= 330 g; Ca= 3,2 g; P= 2,0 g

Exemplo: vaca de 600 kg de peso produzindo 25 kg de leite por dia,

Necessidade de mantença: NDT= 6,25 kg; PB= 750 g; Ca= 22 g e P= 17 g

Necessidade para 25 kg de leite: NDT= 25 x 330= 8,25 PB= 78 x 25= 1.950 g; Ca= 25 x 3,2=80 g; P= 50 g

NECESSIDADES PARA PRODUÇÃO DE LEITE

Exigências diárias totais de nutrientes:

NDT =
$$8,25 + 6,25 = 14,5 \text{ kg}$$
PB = $1.950 + 750 = 2.700 \text{ g}$
Ca = $80 + 22 = 102 \text{ g}$; **P** = $50 + 17 = 67 \text{ g}$

Para um consumo de 3,5% de MS/dia: 600 x 3,5%= 21 kg, os quais devem conter os nutrientes acima, logo a composição deveria

ser:

NECESSIDADES PARA PRODUÇÃO DE LEITE

Exigências diárias totais de nutrientes:

Consumo de MS; 21 kg

NDT = 100 \times 14,5 \text{ kg}/21 = 66\%

 $PB = 100 \times 2.7 \text{ kg/}21 = 12.9\%$

 $Ca = 100 \times 102 \text{ g}/2.100 = 4,86\%$

 $P = 100 \times 67 \text{ g/}2.100 = 3,19\%$

EXEMPLO 1

Estimativa da produção de leite de vacas em lactação, 600 kg de peso vivo em pastagem de sorgo forrageiro vegetativo.

Composição química da forragem:

$$FDA = 39.8\%$$
 $Ca = 0.31\%$ $P = 0.23\%$

Exigências nutricionais de mantença:

$$PB = 0.73 \text{ kg}$$
 $NDT = 6.2 \text{ kg}$ $Ca = 22 \text{ g}$ $P = 17 \text{ g}$

→ Exigências por kg de leite 4% de gordura:

$$PB = 78 g NDT = 330 g Ca = 3.2 g P = 2.0 g$$

CORREÇÃO PARA GORDURA

• $L 4\% = (0,4 + 0,15 . X) \times L1$

X = % de gordura observada

L1 = Produção de leite observada

Exemplo:

Vaca com produção de 20 kg de leite com 3% de gordura.

Produção corrigida a 4% = (0,4 + 0,15 x 3) x 20

$$L 4\% = 0.85 \times 20 = 17 \text{ kg}$$

Consumo de MS estimado

$$MS(\% PV) = (120/58,4) \times 1,4 = 2,9\% \times 600 \text{ kg} = 17,4 \text{ kg/dia}$$

→ Consumo de nutrientes:

PB =
$$17.4 \times 14.2\% = 2.470 \text{ kg}$$

$$NDT = 17,4 \times 63,3\% = 11,0 \text{ kg}$$

Ca =
$$17.4 \times 0.31\% = 54 \text{ g}$$

$$P = 17.4 \times 0.23\% = 40 g$$

Balanço e estimativa de produção

		Exigência por kg de leite (g)	Kg de leite (kg)
	730 g	78	
	6200 g	330	14,5
	22 g	3,2	
	17 g	2,0	

 Produção potencial da forragem = 14,5 kg para vacas de 600 kg – NDT é o limitante

EXEMPLO DE SUPLEMENTAÇÃO

A suplementação deve ser individual:

Suponha uma vaca produzindo 30 kg por dia.

- **Composição química da ração**: PB= 18 % NDT= 68% Ca= 0,23% e P= 0,17%.
- Considerando mineralização no cocho, o NDT é o limitante. O potencial de produção é 14,5 kg
- ▶ Restam 30 14,5 = 15,5 kg de leite a suplementar com ração

$$7,7 \times 78 \text{ g} = 0,6 \text{ kg de PB}$$

EXEMPLO DE SUPLEMENTAÇÃO

NDT = 5,1 kg 10 kg de ração 68% → 6,8 kg X → 5,1 X= 7,5 kg de ração

► Energia é mais limitante que a proteína

EXEMPLO

Vacas, com peso médio de 500 kg, sobre uma pastagem de Brachiaria brizanta. Qual a necessidade de suplementação alimentar para produção de 12 kg de leite?

- Composição química da pastagem: PB= 10,2% NDT= 55% FDN= 70% FDA= 48% Ca= 0,23% e P= 0,17%.
- Exigências nutricionais:
 - Mantença: PB= 0,64 kg NDT= 5,2 kg Ca=20 g P=15 g
 - Produção: PB= 78 g NDT= 330 g Ca= 3,2 g P= 2,0 g

- Cálculos:

a) Consumo de Matéria Seca CMS = (120/70) x 1,4 = 2,4% do PV CMS (kg/dia) = 500 x 2,4% = 12,0 kg

b) Consumo de nutrientes

PB = 12 kg MS x 10,2% = 1,224 kg NDT = 12 X 55% = 6,6 kg $\frac{\text{CÁLCIO}}{\text{CÁLCIO}} = 12 \text{ X } 0,23\% = 27,6 \text{ g}$ FÓSFORO = 12 X 0,17% = 20,4 g

BALANÇO E ESTIMATIVA DE PRODUÇÃO

	1.224	640	584	78	7,5
	6,6	5,2	1,4	0,33	4,3
	27,6	20	7,6	3,2	2,4
	20,4	15	4,6	2,0	2,3

Necessidade de Suplementação

 Fornecimento de MS de concentrado: cada kg de MS de concentrado substitui de 0,3 a 0,5 kg MS do volumoso

 Limite máximo no uso de concentrado - 60% da MS total.

0,4 a 0,8% do peso vivo

 O maior limitante para a produção do exemplo anterior é o NDT que sustenta apenas 4,3 kg de leite, faltando 7,7 kg para completar os 12 kg propostos.

Necessidade de Suplementação

- Para 4,5 kg de leite seriam necessários: 4,5x 78 g de PB = 351 g de PB
- Para 7,7 kg de leite seriam necessários: 7,7 x 0,33 kg de NDT = 2,54 kg
- Se o fornecimento de concentrado fosse de 0,6% do peso vivo teríamos: 500 kg x 0,6%= 3,0 kg
- Em 3,0 kg de ração deveria ter 351 g de PB e 2,54 kg de NDT, ou seja, em percentagem:

CONSIDERAÇÕES

- Sabendo-se que 1,0 kg de ração com 18% de PB e 73% de NDT suporta a produção de 2,2 kg de leite (180/78 = 2,3; 730/330 = 2,2).
- Pode-se definir a quantidade de ração a ser fornecida em razão da diferença entre a produção individual observada e o potencial de produção dado pelos volumosos.
- Assim, se os volumosos suportam 6,0 kg de leite e a vaca produz 15 kg, a quantidade de ração a ser fornecida deveria ser aquela que garantisse a produção de 9,0 kg. Ou seja: 9,0 kg/2,2 = 4,1 kg
- Lei dos lucros decrescentes

Produção potencial de leite pelo teor de PB e NDT de espécies forrageiras, e necessidade de ração com 18% de PB e 73% de NDT para produzir 25 kg de leite com 4% de gordura.

Milheto	17,00	15,0	3,47	4,52	
Sorgo	17,00	15,0	3,47	4,52	
Azevém					
+ trevo	44,0	24,4	0,00	0,00	
Tifton 85	14,20	10,0	4,70	6,80	
Brachiária	a 5,3	6,0	8,60	8,60	

PRODUÇÃO DE LEITE EM SISTEMAS PASTORIS

LEMBRE-SE:

- A qualidade e a disponibilidade de pastagem varia em curto espaço de tempo, até de um dia para outro a medida que o pastejo é realizado.
- Por esta razão é necessário o ajuste das suplementações até diariamente, conforme o método de pastejo utilizado.

PRODUÇÃO DE LEITE EM SISTEMAS PASTORIS

EXIGE:

- Pastagens de qualidade (solo, adubações)
- Manejo adequado das pastagens de verão e de inverno
- Utilização de forragens conservadas mesmo em períodos favoráveis
- Suplementação criteriosa em função da produção individual dos animais